000

Geothermal Energy

Geothermal energy is, literally, the heat of the earth. The heat itself derives from radioactive decay beneath the earth's surface and, in certain locations, it is concentrated enough and is close enough to surface waters to be brought to the surface for a variety of purposes. When it is above 150 degrees C (302 F), it is usually considered hot enough to be used to generate electricity as it is in Italy, El Salvador, Mexico, Japan, Iceland, and Indonesia, among other countries. No such operations exist in Arizona, but several power plants are currently in operation just west of Yuma, Arizona in the Imperial Valley of southeastern California. Although some high temperature geothermal resources exist southeast of Phoenix near the now-retired Williams Air Force Base, they have never been deemed economically feasible.

Resources less than 150 degrees C, have wide non-electric applicability. Indeed, the worldwide potential of such temperatures is many times larger than that used to generate electricity. Such temperatures are used in greenhouses, hot baths, onion dehydration, laundries, and even hotel space heating. The capital of Iceland is almost entirely heated with geothermal water. Several heating districts exist in the US, although none are as large as those in Iceland. These include projects in Reno, Klamath Falls, Boise, Susanville, and other locations. The best source of information in the US on such non-electric applications is the Oregon Institute of Technology Geo-Heat Center.

In Arizona, the opportunity to use geothermal water is limited, in part by population distribution, yet at least three locations are well known. These are Buckhorn Baths in Apache Junction, Castle Hot Springs in the Bradshaw Mountains, and Childs on the Verde River. Additionally, the two highest temperature springs in the state are Clifton and Gillard, both in the Clifton-Morenci area of southeastern Arizona. The water temperature at these springs ranges from 158-180 degrees Fahrenheit. Even though temperatures may exceed 284 degrees Fahrenheit at depth, these two sites are only suitable for low grad steam.

The only types of geothermal energy to be commercially developed are those called "hydrothermal". These include steam, as developed at The Geysers (north of San Francisco), and liquid, as developed in southeastern California. Geothermal energy is also available in several other forms. One of these forms, known as hot-dry rock has attracted some attention in the volcanic areas of the White Mountains, east of Phoenix. In such resource areas, heat is available, but there is insufficient water to conduct the heat to the surface. In some of these cooler climes, geothermal heat pumps might be a sensible application. The Geothermal Heat Pump Consortiummaintains a web site with more information.

In summary, major geothermal resources exist near but not in Arizona. The resource that exists in the state has been recognized and, to some degree, explored, but no sites are considered economically commercial at this time. For more information on geothermal power, visit: http://www.geothermal.org/links.html

Hydropower

Hydropower has been used for millennia in most countries of the world. Its longest application has been for use in mechanical tasks, such as grinding grain. With such simple mechanical devices as a "noria", it has also long been used to lift water. Within the last 100 years, hydropower was applied to the conversion of its kinetic energy to electrical energy. Today, hydropower produces 24 percent of the world's electricity and supplies more than 1 billion people with power.

The obvious advantage of generating electricity in this manner is the very high (around 90%) conversion efficiency (compared to a typical conversion efficiency for a fossil fuel power plant of about 35%.) Additionally, there are no emissions to the atmosphere associated with this generation. The most controversial drawback is that the flooding produced behind the dams. canyons.

Well-known examples of hydroelectric facilities in Arizona include Hoover Dam (on the border with Nevada) and Glen Canyon Dam (near the border with Utah). Together these dams can generate about 3,000 MW of electrical power. The reservoirs that each dam creates (Lake Mead and Lake Powell) are heavily used for recreation. Other hydroelectric dams include those on the Salt River and the Colorado River below Hoover Dam. Several sites have been suggested over the years for additional large projects. These have been successfully resisted in all cases because they would infringe on scenic areas, such as Grand Canyon.

At least 22 sites have been identified in Arizona for pumped storage facilities, that is, ones that use off-peak power to pump water back behind dams, making the water again available for the generation of electricity during periods of peak demand. At least 37,000 MW of potential installed capacity has been identified for the state. To date, only a few have been built, all of which are associated with existing dams.

For more information on hydropower, a technology analysis is available from the National Renewable Energy Lab (NREL) web site.

Other Renewable Energy Sources



External links:


Bioenergy

Bioenergy

Biomass is an organic renewable energy source that includes materials such as agriculture and forest residues, energy crops, and algae. Scientists and engineers at the Energy Department and National Laboratories are finding new, more efficient ways to convert biomass into biofuels that can take the place of conventional fuels like gasoline, diesel, and jet fuel.

In the interim, visit this site for information: 


Hydrogen

Hydrogen

Hydrogen is a clean fuel that, when consumed in a fuel cell, produces only water. Hydrogen can be produced from a variety of domestic resources, such as natural gas, nuclear power, biomass, and renewable power like solar and wind. These qualities make it an attractive fuel option for transportation and electricity generation applications. It can be used in cars, in houses, for portable power, and in many more applications.

In the interim, visit this site for information: Hydrogen Fuel Basics

Solar Space Heating

  • DOE - Active Solar Heating discontinued

    The helpful information once on the EnergySavers.gov website designed to help American residents save energy in their homes, workplaces, and vehicles is no longer available.  This resource was removed in February 2019.  However the information was rather dated.  The above link now goes to an article about the history of EnergySavers.gov by a commercial organization.  Linked for info only, not as a recommendation. 

  • Space Heating for Commercial Buildings
    From the Florida Solar Energy Center at the University of Central Florida.

  • Space Heating with Active Solar Energy Systems
    From North Carolina State University.